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FINAL REPORT

NASA Grant NA GW-2031

Janet Franklin, Principal Investigator

ABSTRACT

Three different types of remote sensing algorithms for estimating vegetation amount and
other land surface biophysical parameters were tested for semiarid environments. These
included statistical linear models, the Li-Strahler geometric-optical canopy model, and

linear spectral mixture analysis. The two study areas were the National Science
Foundation's Jornada Long Term Ecological Research site near Las Cruces, NM, in the
northern Chihuahuan desert, and the HAPEX-Sahel site near Niamey, Niger, in West

Africa, comprising semiarid rangeland and subtropical crop land. The statistical approach
(simple and multiple regression) resulted in high correlations between SPOT satellite
spectral reflectance and shrub and grass cover, although these correlations varied with the
spatial scale of aggregation of the measurements. The Li-Strahler model produced
estimated of shrub size and density for both study sites with large standard errors. In the
Jomada, the estimates were accurate enough to be useful for characterizing structural

differences among three shrub strata. In Niger, the range of shrub cover and size in short-
fallow shrublands is so low that the necessity of spatially distributed estimation of shrub

size and density is questionable. Spectral mixture analysis of multiscale, multitemporal,
multispectral radiometer data and imagery for Niger showed a positive relationship
between fractions of spectral endmembers and surface parameters of interest including soil
cover, vegetation cover, and leaf area index.

PROJECT SUMMARY

This brief summary will outline the objectives and results of this research. A detailed
description of the progress in the final year of the project can be found in the attached
Appendix, outlining further work currently being carried out under sponsorship of a NASA
Global Change Fellowship awarded to Jeffrey Duncan (doctoral candidate).

The objectives of the research funded under this award were to invert models of surface
reflectance to estimate vegetation parameters from remotely sensed data, and specifically
to examine the effect of woody cover (shrubs) on the composite spectral reflectance of
semiarid landscapes composed of herbs, shrubs and bare soil. Our estimates of fractional
cover and plant size will be used by our scientific collaborators as inputs to spatially
disaggregated model of land surface-atmosphere exchanges of energy and water, and of
ecosystem primary productivity. This work was carried out during the first two years of
this NASA award in NSFs Jornada Long Term Ecological Research site, and in the last
three years in conjunction with the HAPEX (Hydrologic-Atmospheric Pilot Experiment) -
Sahel, that took place in Niger, West Africa during 1991-1992.

We are using spectral mixture and geometric optical models to estimate woody and
herbaceous vegetation amount and soil cover at the subpixel level, and the size and density
of shrubs at the multi-pixel stand level. We are examining the effects of sensor spatial,



spectralandtemporalresolutionon the estimation of these parameters using the rich
HAPEX dataset consisting of ground-, aircraft- and satellite-based radiometric data and
numerous field-based biophysical measurements.

This research will contribute to a) the physiologically-based modeling of primary
production using satellite data, and b) the HAPEX goal of developing algorithms for
deriving surface parameters that are important in land-atmosphere exchanges of energy and
moisture from remotely sensed data in a subhumid tropical savanna.

Our results can be summarized as follows:

The Li-Strahler geometrical-optical canopy reflectance model was inverted to predict
shrub size and density in semidesert in New Mexico, USA (the Jornada Long Term
Ecological Research site). While predictions had large average errors of 35%,
estimates were reasonable (within one to 2 standard errors) when aggregated by shrub
stratum. Parameterizing the non-random spatial pattern of shrubs in the model

produced more accurate predictions (Franklin and Turner 1992).

Empirical models were developed to predict shrub cover from broadband spectral
reflectance and green vegetation indices in semidesert in New Mexico, USA (the
Jornada Long Term Ecological Research site) using simple and multiple regression.
Remotely sensed data were from the SPOT satellite. Coefficients of determination
were as high as 0.77 despite a limited range of shrub cover in the sample. Greenness
indices were more sensitive to shrub cover and phenology than brightness indices. The

scale of aggregation for estimating both cover and reflectance had a substantial effect
on the results. Shrub and grass cover could be differentiated using multidate SPOT

imagery (Duncan et al. 1993).

A broadband radiometer was used for field measurements of vegetation and soil

components of the landscape in semiarid grassland and shrubland in New Mexico,
USA (the Jornada Long Term Ecological Research site). Shaded components (self-
shaded plant canopies and soil shaded by plant canopies) had distinct reflectances in
the infrared band (due to strong scattering by green leaves) which affected spectral
green vegetation indices for those components. Plant canopies of morphologically
different shrub canopies had quite similar broadband optical reflectance properties at
the end of the growing season, but could be distinguished temporally (Franklin et al.
1993).

A cover-weighted spectral mixture model predicted the reflectance of two 0.5 km 2 sites
from the cover and reflectance of shrubs and understory (grass and soil) in the tropical

semiarid Sahel in Niger, West Africa. Ignoring the shaded components does not cause
serious errors in the model (Duncan and Franklin 1993, Franklin et al. 1994)

The Li-Strahler canopy reflectance model was inverted for 27 shrub fallow sites within
the HAPEX-Sahel supersites. Predictions of shrub size and density had large average
errors, but it was noted that the average and range of shrub cover in the sample sites
was very low (about 4-15% cover; Duncan and Franklin 1993).

A linear spectral mixture model was inverted for broadband radiometer data (Exotech)
acquired from a light aircraft in conjunction with HAPEX-Sahel. Results showed a
more temporally stable relationship for leaf area index than for projected canopy cover
and green vegetation spectral fraction (Duncan and Franklin 1994).
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1. Introduction

Accurate predictions of the future global climate require more realistic representations of the earth's

surface in global climate models (GCM) (Dickinson, 1984; Sellers et al., 1986, Henderson-Sellers 1990).

The exchange of energy and mass between the terrestrial surface and the atmosphere plays a large role in

determining global climate, a circumstance of particular current interest because of the increasing role of

human populations in affecting landcover changes. Soil type, and vegetation type and structure affect energy

and mass fluxes (H20 and CO2) by largely determining surface albedo, the partitioning of net radiation into
sensible and latent heat flux, and the level of turbulent flux through the partial control of aerodynamic

roughness (Dickinson, 1983; Garratt, 1992). The use of satellite-borne sensors to monitor the significant

surface components of the terrestrial biosphere is an important part of current research efforts because of the

spatial and temporal scales at which observations from space can be made (Sellers et al., 1990). A consistent

objective of the recent major international studies of land/atmosphere interactions, e.g., HAPEX-MOBILHY

(Andre et al., 1988), FIFE (Sellers et al., 1992), EFEDA (Boile et al., 1993) and the recent HAPEX-Sahel

experiment which took place in Niger, West Africa in 1991-1992 (Goutorbe et al., 1994), has been to

develop algorithms that "connect satellite observed radiances with the actual physical variables needed for

climate studies and modeling" (Sellers et al., 1990, p. 1429).

The goal of the HAPEX-Sahel experiment was to better characterize the contribution of the
Sahelian region to the global climate (Goutorbe et al., 1994). The Sahel, like other semiarid regions that

together make up approximately one-third of the terrestrial earth surface, is subjected to land degradation

caused by increased utilization and/or drought. In semiarid regions, degradation can result in a change in the

ratio of herbaceous to woody cover significantly affecting mass and energy fluxes (Schlesinger et al., 1990).

For example, preliminary results from HAPEX-Sahel showed that the maximum rate of photosynthesis in the

herbaceous layer fell more rapidly than that of shrubs through the course of a day. This is indicative of an

earlier closing of stomata by grass and forbs as a result of high surface temperatures and reduced soil

moisture in the upper layer. Shrubs were able to keep their stomata open longer because of their ability to

tap deeper water sources (Goutorbe et al., 1994). Furthermore, roughness length and its influence on
turbulence in the lower atmospheric boundary layer can vary significantly with large variations in the shrub

cover/herbaceous layer ratio (Graetz, 1990; Graetz et al., 1994).
The surface components that affect mass and energy fluxes, primarily woody vegetation, the

herbaceous layer and soil, are spatially distributed such that they comprise mixtures at the scale of the

satellite measurement, particularly in semiarid areas. Spectral mixture models may enable the quantification

of the proportions of materials that contribute to the signal recorded for individual image pixels (Huete,
1986; Smith et al., 1990; Roberts et ai., 1993; Mertes et al., 1993). However, in many of the studies of

semiarid vegetation to date, the validation of component "fractions" estimated by mixture models has been

largely qualitative. Furthermore, the estimates of vegetation fraction have been most often related to

proportional cover, either qualitatively or empirically through regression with field estimates. It is of

interest, therefore, to investigate the quantitative relationships between mixture model vegetation fractions

and biophysical parameters, i.e., proportional cover, leaf area index (LAI) or biomass. The spatial and

spectral resolution of the remotely sensed measurements themselves may affect these relationships, as will

the timing of the measurements, particular in terms of vegetation phenology.

Geometric-optical canopy models explicitly relate inter-pixel brightness variations in a satellite

image to spatial variations in vegetation canopy structural parameters, e.g. size, shape, spatial pattern and

density, and the resultant distribution of shadows (Li et al., 1986; Franklin et al., 1992). Estimates of canopy

shape, size and density are useful in calculations of surface roughness length, an important parameter in flux

models (Graetz, 1990; Graetz et al., 1994; Raupach, 1992; Tuzet et al., 1993; Bogh et al., 1993). One

assumption of geometric-optical canopy models is that brightness variations in the remotely sensed data are

driven primarily by spatial variations in tree or shrub structural parameters, and not by variations in the

reflectance of the background (soil and the herbaceous layer). Because spectral mixture models may provide

explicit information about the subpixel proportions of surface components including the background it may

be possible to integrate the two approaches and improve the accuracy of shrub size and density estimates in

areas of high variability in background reflectance.
The HAPEX-Sahel experiment produced an extensive dataset including field measurements of

surface characteristics, areal fluxes, and multispectral, multiscale, multitemporal measurements of surface



radiancefromground,airandsatellitebasedsensors.Usingthesedata,spectralmixtureandgeometric
opticalcanopymodelsdrivenberemotelysenseddatawillbeusedtoinvestigatethefollowingresearch
questions:

l) Canaspectralmixturemodelbeusedtoestimatethespatialdistributionofkeybiophysicalparameters,
e.g.proportionalcover,LA!orbiomass,intheHAPEX-Sahelstudyarea,andwithwhatdegreeof accuracy?
2)Cantemporalvariationsintheabovebiophysicalparametersbemonitoredinthestudyareausingspectral
mixturemodels?
3)Whataretheeffectsofvariationsinsensorspectral,spatialandtemporalresolutionontheabove
questions?
4)Canthespectralmixtureandgeometricopticalapproachesbeintegratedtoimproveestimatesofshrub
sizeanddensityinthestudyarea?

Theresultswillbeusedto support related research efforts within HAPEX-Sahel including the

modeling of net primary productivity (NPP) using the satellite derived normalized difference vegetation
index (NDVI) (Prince, 1991), and a model of radiative transfer that explicitly accounts for interception by

the woody layer (Begue et al., 1994). Furthermore, model output could help provide maps of the spatial

distribution of biophysical parameters related to NPP, and energy, CO2 and H20 fluxes, for example soil,

vegetation cover and roughness length, suitable for scaling up site-specific measurements made during the
Intensive Observation Period (IOP) of HAPEX-Sahel to mesoscale and global models. Finally, the results

will help indicate the sensitivity of the models to sensor spectral and spatial resolution, and to the temporal
variations in the spatial distribution of vegetation and soil in the Sahel, thereby improving model

applicability to semiarid regions in general.

2. Background

Most of the current efforts to monitor vegetation from space rely on spectral vegetation indices

(SVI) that contrast the differential reflectance of vegetation in the red and near-infrared (NIR) wavebands
with that of soil, where the magnitude of reflectance is typically similar in both wavebands (Tucker, 1979).

SVIs, such as the Simple Ratio, NDVI and SAVI have been shown, in some studies, to correlate well with

vegetation parameters such as proportional vegetation cover, LAI and biomass (Tucker, 1979). However, in
studies of sparse vegetation, SVIs have been shown to be highly sensitive to variations in soil reflectance,

solar zenith angle, viewing angle and atmospheric effects (Huete, 1989). The relationship between SVIs and

vegetation is typically calibrated empirically, for example, by regression with field measurements, for

imagery acquired on a single date (Foran, 1987, Graetz et al., 1982). Where vegetation and soil form

mixtures within the field of view (FOV) of the sensor, as is typically the case in semiarid areas, establishing

this relationship can be problematic (Duncan et al., 1993a).

Spectral mixture models offer a means of quantifying the proportions of green vegetation, non-

photosynthetically active vegetation (NPV) and soil occurring within pixels resolved by satellite sensors.

Mixture models can also be used to simultaneously correct satellite data for extraneous factors affecting the
measurement unrelated to the surface materials (Adams et al., 1993). Therefore, they are powerful tools for

deriving information from satellite data critical to the accurate modeling of surface processes.

2.1. Spectral Mixture Modeling

In spectral mixture modeling, pixel reflectance is modeled as a linear combination of the reflectance

of the components in the ground resolution element weighted by their areal proportions. The number of

individual components whose proportions can be accurately estimated within the mixed pixels of a remotely
sensed image is based on the intrinsic dimensionality of the data. The dimensionality of a remotely sensed

image is determined by, l) the number of components and their relative proportions within the scene (which

determines the magnitude of the component signal), 2) spectral differentiation between component
signatures, 3) the number of wavebands over which measurements are made, and 4) the signal to noise ratio

of the measuring sensor (Sabol et al., 1992; Adams et al., 1993). The number of resolvable components
cannot exceed n + 1 (where n = number of bands) and is usually less than n.



Spectral mixture modeling involves solving linear models of the form:

d_k = E rij c# + e,k (1)

where d,k is the measured response of spectral mixture, i.e., pixel k in waveband i, summed over the number

of significant reflecting components in the pixel, r_ is the reflectance of componentj in waveband i, cjk is the

proportion of componentj in pixel k and e,k is an error or residual term (from Huete, 1986). The magnitude
of model residuals are affected by spatial variations in atmospheric conditions, by solar illumination
variations across the scene as a function of shadows and shade at all scales, and by sensor response variations

(Adams et al, 1993). Stochastic variations in the spectral reflectance of the scene components also contribute

to model uncertainty. The model can be solved through a least squares approach by having knowledge of r,

the component spectra, and finding for c, component proportions such that the error term is minimized.

Pure component spectra are typically distributed in different locations around the extremes of the n

dimensional spectral data cloud determined by the spectra of all the pixels in an image (Boardman et al.,

1994). In the two-dimensional representation illustrated in Figure 1, a bright soil "endmember" is located in

the high red and NIR reflectance comer of the plot, the green vegetation endmember is found in the low red,

high NIR comer and shade is the darkest component in the scene. This data structure is analogous to the
Tasseled Cap transformation of Crist et al. (1984). All the other data points represent pixels that are various

combinations of the pure endmember spectra. If the spectra of a component of interest lies closer to the
center of the n dimensional data cloud than the extremes it is more difficult to model directly using the

mixture model approach. This is because pixels comprised of combinations of other components can

spectrally mimic the component of interest.
The model thus described applies strictly to the linear case where the incoming solar radiation

interacts with only one material before reaching the sensor. The validity of this assumption varies with

surface material type and with the spectral band used in the measurement. For example, some portion of the

incoming solar radiation in the NIR wavelengths is reflected by green vegetation, acquiring a partial

vegetation "signal" in the process. Some of this radiation is scattered in the direction of the underlying soil

imparting a vegetation component to the resulting soil "signal" that is reflected back to the sensor (Huete,

1987; Roberts et al., 1991). Violations of the linear assumption may not have serious consequences in

situations where non-linearly reflected radiation contributes only a small amount to the total areally-averaged

reflectance, e.g., in semiarid areas where vegetation is sparse (Smith et al. 1990, Franklin et al., 1994).

A spectral mixture model can be used to explicitly calculate variations in scene radiance due to

atmospheric effects and sensor noise. First, image endmembers are located consisting of individual pixels

composed entirely of a single component of the n number of components in the model (e.g., bare soil, green

vegetation and shade). If"pure" pixels can not be located in the scene, pixels are chosen whose spectra

indicate the presence of large proportional covers of the single components. Image endmember spectra are

then calibrated or aligned with the spectra of target endmembers measured in the field or the laboratory using

multiple regression (Smith et al., 1990). The differences between image endmember spectra and target

endmember spectra, as expressed by the gain and offset of the regression equation, are ascribed to

atmospheric effects and sensor noise.
Variable illumination across the image is modeled explicitly by the inclusion of a "shade"

endmember. Shade is modeled as a combination of shadow and photometric shade, defined as the decrease

in measured reflected radiance due to an increase in the angle of incidence of solar irradiance (Roberts,

1991). While variable shade proportions directly affect pixei reflectance, they are not typically of interest in

terms of biophysical models. Shade proportions must, therefore, be reassigned to more important

biophysical components, e.g., vegetation and soil. Where photometric shade dominates, shade can be

reapportioned to soil and vegetation components weighted according to the proportions of these components
as estimated by the original model. Difficulties arise in reapportioning the shade fraction when "shade" is

dominated by shadow. Shadows can be cast by vegetation canopies predominately onto bare soil, or onto

other canopies, making the reapportionment process more problematic (Adams et al., 1993; Roberts, 1991).

Adams et al. (1993) describe an approach where the spectral mixture model is solved in an iterative

fashion, and images of calculated fractions and residuals are used as diagnostic tools to evaluate the model.

The spatial distribution of residuals can indicate the presence of a material not included in the model or the

use of incorrect spectral signatures for the targeted scene components. While fractions are constrained to



sumto 1,individualfractionscanbe> ! or<0(Adamsetal.,1993).Thespatialdistributionof"outof
bounds"fractionscanthenbeusedtoevaluatethemodelparameterization.Forexample,if thespectraused
tomodelgreenvegetationweretakenfromapixelwithlessthan100%vegetationcover,pixelswithgreater
greencoverwillhavecalculatedfractions> I andothermodeledcomponentswillhavecalculatedfractions
of<0. Pixelswithsuperpositivegreenfractionsmayprovidemoreappropriategreenvegetationendmember
spectra.

Amodifiedfactoranalysisapproachhasalsobeenusedtosolvethemixedpixelproblem
(MalinowskiandHowery,1980;Huete,1986;Malinowski,1991).Here,themeasurementsofthe
reflectanceofmixedpixelsareportrayedastherowsofamatrixwiththesamplesinvariouswavebands
displayedasthematrixcolumns.TherawdatamatrixD is then decomposed into the product of an abstract

spectral signature matrix R and a proportions matrix C, i.e., D = R C (Malinowski et al., 1980; Huete, 1986).

The procedure is statistically similar to the least squares approach described above, however, it also includes

a useful method for determining the number of significant scene components and a method for predicting

values for portions of target component spectra not measured in the field or in the laboratory.

In modified factor analysis, the original data matrix is first decomposed into its n orthogonal

principle components, each of which has a characteristic abstract spectral signature. A number of tests can

be used at this point to determine the correct number of components, e.g., defining the intrinsic
dimensionality of the dataset. The abstract spectra of the significant components are then rotated to conform

to the real spectra of suspected components in a target transformation step. During this step, component
spectra measured in the field or in the laboratory can be tested individually to determine ifa suspected

component is present in the spectral mixture. Furthermore, ifa value for a particular bandwidth is missing

from the "library" spectra of a suspected component, it can be predicted in the target transformation step.

The procedure also includes a test of the statistical significance of adding additional components to the

model (Malinowski, 1991).
Most of the recent interest in the mixture modeling approach can be attributed to the work of the

group at the University at Washington (Adams et al., 1986; Smith et al. 1990, Mertes et al. 1993, Roberts et

al., 1993; and others). Mixture models have been applied to data from the Airborne Visible-Infrared
Imaging Spectrometer [AVIRIS] (20 m FOV-dependent on altitude, 224 bands), Thematic Mapper [TM] (30

m FOV, 6 visible and infrared bands), Landsat Multispectral Scanner [MSS] (80 m FOV, 4 bands) and the

Advance Very High Resolution Radiometer [AVHRR] data (! km FOV, 2 bands, visible and NIR). In the

case of AVHRR data the dimensionality of the 2 band data was increased by utilizing multidate spatially

registered data, and the model was used to distinguish broad cover classes, e.g. forest vs. non-forest

(Quarmby, 1992).
A review of the results of the studies cited above indicates that the accurate detection and

quantification of surface materials using spectral mixture models is not necessarily limited to high spectral

resolution datasets. General classes of surface features, for example, vegetation or soil, have similar

reflectance spectra. Therefore, an increase in spectral resolution does not necessarily increase the

delectability of particular vegetation or soil types (Huete, 1986; Smith et al., 1990). However, the use of

higher spectral resolution data can reveal narrow absorption bands that can be diagnostic of surface materials
such as NPV (Roberts et al., 1993). The results of an analysis of simulated MSS, TM, and AVIRIS data

indicated that component detectability increased with spectral resolution, but the increase was offset

somewhat by a reduced signal to noise ratio for the highest spectral resolution data tested (Sabol et al., 1992).
Furthermore, component detectability varied because of variations in component spectra and differences in

sensor band positions and bandwidths, both in terms of modeled fractions and in the use of model residuals

to detect components that were not directly modeled (Roberts et al., 1993; Sabol et al., 1992).
Increased spatial resolution does not necessarily result in an increase in the number of detectable

components if there is not a concurrent increase in spectral variation (Adams et al., 1993). Spectral variation

over space could also result in increased variation in model residuals (i.e., a poorly fit model) because of: 1)

unmodeled spectrally distinct components, 2) stochastic variations in the spectral response of modeled

components, and 3) the absence of modeled components (Sabol et al., 1992). Varying sensor spatial

resolutions could result in differences in both the variance of model residuals and the accuracy of component

fraction estimates. However, spectrally distinct landscape units composed of different suites of components

could be modeled separately using prior image stratification.



Estimatesof the proportions of surface features by mixture modeling may be more precise than field

estimates. For example, vegetation cover is usually overestimated by field techniques, because gaps between
branches and leaves are difficult to measure in the field (Smith et al. 1990). Mixture model estimates of

green vegetation proportions have also been shown to be correlated with vegetation phenology (Smith et al.

1990). However, in studies of semiarid vegetation to date, the validation of component fractions estimated

by mixture models has been largely qualitative, and quantitative validations have been limited by difficulties

in obtaining concurrent ground measurements. Furthermore, there is a lack of integrated studies into the

effect of variations in both the spatial and spectral resolution of the remotely sensed measurement on 1) the

accuracy of component fraction estimates and 2) the precise biophysical parameter, i.e., proportional cover,

LAI or biomass, to which vegetation fraction estimates are most closely related. While the studies to date are

indicative of the potential of the spectral mixture modeling approach, there is a need for further rigorous

testing and validation of results in order to bring the technique into the mainstream of remote sensing image

processing methods.

2.2 Geometric-Optical Canopy Modeling

Estimates of vegetation size and density are necessary for an accurate calculation of aerodynamic

roughness, which represents the level of turbulent coupling of the land surface to the atmosphere (Graetz,

1990; Graetz et al., 1994; Garratt, 1992). Much of the current research in modeling land/atmosphere

exchanges of mass and energy at the GCM scale is focused on more accurate parameterization of the surface

vegetative layer (Graetz et al., 1994). Geometric optical canopy models offer a means of deriving

information about canopy size and density over large areas using remotely sensed data.

Geometric optical canopy modeling is a form of mixture modeling where pixel reflectance is
modeled as a linear combination of the reflectance of four scene components: sunlit and shadowed canopy

and background (a mixture of soil and herbaceous layer). The difference between the geometric optical

model approach and the spectral mixture models described previously is that spatial variations in the

proportional cover of the shadow components are explicitly modeled as functions of variations in canopy

size and density. Spatial variations in background reflectance are assumed to have a minimal effect on the

spatial variance in reflectance. A further assumption is that the spatial distribution function of shrubs is

known or can be estimated in the field. Other parameters needed to run the model include estimates of the

average shrub shape (estimated as the ratio of the horizontal to vertical radii of a shrub modeled as an

ellipsoid) and the average spectral signatures of the sunlit and shaded crown and background components.

A key element in estimating crown size and density is the estimation of a cover index, m, calculated

by,

m = _ (2)

A

where n is the number of shrubs, R e is the average shrub diameter and A is area. Therefore, m is equal to

shrub density times the average horizontal radius of the shrubs for a given area, in this case a single pixel.

Multiplying m by n would yield an estimate of proportional shrub cover for a pixel. Li et al. (1985) show

how m can be calculated solely on the basis ofpixel reflectance, the signatures of the four components, and a

geometric parameter relating the area of shrub crown and shadow, with shrub shape and the solar zenith

angle. The cover index, m, can be calculated for each pixel in a stand. However, calculating m for a pixel

does not automatically yield an estimate of size, given that many small shrubs and a few big shrubs can result

in the same m value. However, ifa homogeneous stand has many pixels, Li et al. (1985) proved that if the

trees are randomly distributed within the stand, and crown size is independent of tree density, then:

Re Vm (3)

(I +W)M

where Mand Vm are the mean and variance ofm for all the pixels in a stand, and W is the coefficient of

variation of the squared crown radius. Therefore, the mean shrub size for a stand is estimated from the
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interpixelvariancein m, the shrub cover index. Given m and Re, equation 2 can be easily manipulated

algebraically to yield an estimate of shrub density.
Model estimates of shrub size and density are problematic in semiarid areas because of the low

density of shrubs and the lack of range in shrub cover which results in a low "signal" to noise ratio. The

bright and variable background in these regions also contributes to noise unaccounted for by the model. One

means of removing the influence of the background would be to derive an independent estimate of shrub

cover on a pixel by pixel basis in a shrub stand through the use of a spectral mixture model. Shrub cover

could then be easily converted to m for each pixel in a stand (described above). Then, using equations 3 and

2, R e could be calculated, as well as n, the number of shrubs per pixel in a stand.

The geometric optical canopy model approach has been used in coniferous forest (Li et al., 1985),

tropical dry woodland and savanna (Franklin et al., 1988) and subtropical shrubland (Franklin et al., 1992) to

estimate average plant crown size and density. Model estimates of shrub size and density in a semiarid
desert in New Mexico were accurate to within 1-2 standard errors of the observed values (Franklin et al.,

1992). These results indicated that it may be possible to categorize geometric optical model estimates of

shrub size and density into reasonably accurate classes (Franklin et al., 1992).

3. Preliminary Research

Preliminary work related to the proposed research has already been completed, including field

measurements at the HAPEX-Sahel study site, analysis of these data as they pertain to the implementation of

the models, and a preliminary test of the geometric-optical canopy model. A description of the study area

will be followed by a review of these preliminary results.

3.1 Study Area

The landscape of the study area, located in Niger, West Africa, consists of a fine scale patchwork of

small-field millet production (field size << 1 km 2) and fallow areas dominated by the deciduous shrub

Guiera senegalensis and an herbaceous layer of annual grasses and forbs with some perennial grasses

(Goutorbe et al., 1994). The millet and fallow fields occur predominately in wide sandy valleys separated by

laterite-capped plateaus. The size of the irregularly shaped plateaus varies from < 1 km to an approximate

maximum of 10 km along their long axes. Vegetation on the plateaus occurs as strips of dense shrubs and

some trees, dominated by Combretum micranthum, Combretum nigricans and some Guiera, separated by

bare laterite soil. Plateau vegetation is referred to as tiger bush because of the characteristic striping pattern

evident in aerial photographs and remotely sensed imagery.
The HAPEX-Sahel experiment took place within on a 1° latitude x 1° longitude square (2-3 ° E, 13-

14° N), comparable in size to a GCM grid cell, an area intended to encompass the spatial variability of the

surface cover types described above. Three "super sites" selected for intensive study were located in an

attempt to capture the long term north-south rainfall gradient of the region. Subsites representing the three

major land cover strata, millet, fallow and tiger bush, were intensively studied within each of the super sites.

While some data collection took place in 1991, the majority of the data were collected by all investigators in

1992, with an intensive observation period (lOP) from August 15 to October 9, 1992, timed to capture the

transition from the wet to the dry season.

Rainfall, measured at gauges located throughout the 1° square, totaled an average of 537 mm for
1992 (Goutorbe et al., 1994). There was evidence of a significant north (low) to south (high) gradient in

total rainfall. There was also a marked difference in the timing of rainfall over the study area with the

southern super site receiving significant rainfall several weeks before the more northern super sites. Overall,
there was evidence of extremely high frequency spatial and temporal variations in rainfall throughout the

study area. The first rainfall was in late May with a marked increase from late July through August. After

September 16 there was no measured rainfall within any of the supersites (Goutorbe et al., 1994).

The three to four month growing season in the region began with the onset of the summer monsoon

in June-July and extended into October. The temporal cycle of vegetation green-up and senescence varied

by vegetation type. During 1992, the deciduous shrubs began leaf growth in June followed by the growth of

the herbaceous layer in July/August. The herbaceous layer green-up was temporally differentiated into two

components, perennial grasses and annuals. Generally the growth of annual forbs appeared to precede the
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newgrowthofperennialgrassesbyseveralweeks.Thesenescenceoftheannualsbeganinmid-September,
sixtoeightweeksbeforethatoftheperennials.ShrubsdidnotbegintodroptheirleavesuntilaftertheIOP.

3.2FieldMeasurements

During1992,detailedfieldmeasurementsofshrubsize,density,spatialpatternandbroadband
componentreflectancesweremadeattwofallowsubsitesrepresentativeofthetwomainphysiognomictypes
ofshrubfallowintheregion:Guiera with a perennial grass and annual grass and forb understory, and

Guiera occurring on an eroded surface with little grass cover but with a large seasonal forb component.

Average shrub size and shape was estimated by measuring two horizontal "diameters" (the longest axis of

each shrub and the one perpendicular to it) and height for a number of shrubs in each of the two subsites.

Sample shrubs were located by placing ten 15 m radius circular plots arranged in a regular grid through

representative portions of each of the two plots (n = 344 and 288, for the shrub/grass and shrub/degraded

sites, respectively).

The spectral signatures of the surface components in the shrub fallow subsites and tiger bush were

sampled using a pole-mounted Exotech radiometer fitted with filters emulating the first four TM bands. The

components sampled were sunlit and shaded shrub crown (and short trees in the tiger bush), the herbaceous

layer (grass, forb), and soil (sand, eroded crust, laterite). In order to control for stochastic variations in

reflectance among shrubs, twenty shrubs in each of the two detailed measurement plots were selected for

repeated radiometric sampling. The component radiance measurements were converted to reflectance values

using radiance measurements of a barium sulfate reflectance panel acquired periodically throughout each

sampling session. Measurements were repeated at least once every two weeks from June to early October in

order to evaluate the variations in component signatures with phenological changes and variations in solar

zenith angle. During the sampling period from June to October, solar zenith angles at the time of
measurement varied from 15° to 55 ° with a mean of 34 ° and standard deviation of 7.7 °.

In order to better understand the variability, both spatially and temporally, of the reflectance of the

background (herbaceous layer and soil), radiometric measurements were repeated at the fallow subsites

approximately every two weeks along permanent 50 m transects (2 in each site). Each transect consisted of

50 contiguous 1 m x 1 m quadrats. Each quadrat was sampled radiometrically and visually interpreted for

percentage cover of live and dead material. Qualitatively differences in soil color or relative soil brightness

were recorded. The relative proportions of forb and grass cover was visually estimated.

Non-linear spectral mixing was investigated in the field by measuring the solar irradiance reaching

the surface in TM bands 1-4 as a function of proximity to shrubs. The radiometer was fitted with diffusing

180 ° lenses and placed in an upward-looking orientation at the ground surface in sampling positions along

transects near and under the 20 replicate shrubs in each of the two study plots. The sample transect, oriented

along the solar plane, included I0 equally spaced samples beginning 2 m from a shrub on the side directly

facing the sun with four samples 0.5 m apart, continuing with a sample under the leading edge of the shrub, 2

samples under the shrub canopy, 1 sample in the shrub shadow, and 2 samples in the sun beyond the shrub

shadow. Upward-looking radiometric measurements were also made at ground level in more open areas

(i.e., no shrubs within 20 m) before and after transect measurements for the purpose of standardizing the
transect measurements. The measurements were made on four dates for each of the two subplots at

approximately three week intervals.

3.3 Preliminary Results

3.3.1 Component Spectral Separability

An analysis of the component spectra indicated that the separability of some components varied
temporally and was waveband specific. The four band spectra of most of the spatially significant surface

components are displayed in Figure 2. The multiple samples displayed for each component are

representative of variations in the spectra over the growing season. The earliest date displayed is July 30

(day of year [DOY] 212) when the shrub canopy in the sampled areas had increased to an average green leaf

area index of 0.4 (Goutorbe et al., 1994). After this date there was less variance in the within component

sampled spectra than between components.
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Thecomponentspectra(Figure2)showedsignificantspectralseparation,predominatelyinthered
andNIRbandsbutalsointhegreenband.Thethreesoilcomponents,sand,erodedcrustandlaterite
exhibitedsomedifferencesinspectralcurveshapebutmoresignificantlyintheoverallreflectance
magnitude.Fieldobservationsshowedthatmoisturecontentclearlyaffectedsoilreflectance,however,the
surfacelayerofthepredominantlysandysoilsintheregiondriedquickly.Whentheerodedcrustwasmoist
it becamespectrallymoresimilartolaterite.

Thespectraoftheshrubcrownswereindistinguishablefromtheshadedcomponentsinthevisible
wavelengthsbutallthreecomponentsoccupieddifferentaveragepositionsintheNIR.Theshadowed
backgroundcomponent(theaveragedspectraofshadowedsoilandherbaceouslayer)hadthelowestNIR
reflectancethroughouttheseason,sunlitgreenvegetationthehighest,whileshadowedshrubcrownhadan
averageNIRreflectancevalueintermediatebetweenthetwo.ThiscanbeattributedtoincreasedNIRscatter
by leaveswithinthecanopy,resultinginapotentiallyuniquecanopyshadecomponent(Robertsetal.,1993;
Huete,1986;Franklinetal.,1994).

ThespectraofNPV,representedbysamplesofsenescentgrassstandingindenseclumpsare
displayedinFigure3alongwithsomeofthepreviouslydisplayedcomponentspectra.TheNPVspectra
appearedtomimicthatoflaterite(showninFigure2)withslightvariationsintheredandNIR.Astheratio
ofgreentosenescentbiomassintheseclumpsincreased,theirspectralresponsedecreasedinthevisible
bandsandincreasedintheNIRuntilit approachedthatofgreenshrubs.Thispatternwassimilarforboth
grassandforbs.

Theresultsindicatethatthenumberofspectrallyuniqueandspatiallysignificantcomponentsinthe
studyareamayexceedthemaximumdimensionalityof3-6banddata.However,itmaynotbenecessaryto
includeallcomponentsineachmixturemodelbecauseofvariationsintheirspatialandtemporal
distributions.Forexample,whenshrubsandtheherbaceouslayerbothhaveanabundanceofgreenleaves
theirspectramaybeinseparable.However,it maybepossibletomodelshrubandherbfractionsatdifferent
timesduringthegrowingseasonwhenonetypeis"green"andtheotherisless"green".Whilethethreesoil
componentsappeartoexhibituniquespectra,it maynotbenecessarytoincludethemsimultaneouslyinthe
samemodel.Forexample,lateriteisgenerallyconfinedtotheplateausandthemoredegradedsurfaces.
Suchsurfacescouldbemodeledseparatelyusingpriorimagestratification.Itmaybepossibletomodel
NPVinareaswithsandysoilsbutnotwherelateritepredominatesduetothesimilaritybetweenNPVand
lateritespectralsignatures.Modelingshadeastwoseparatecomponentswillbeproblematicbecauseof
sparseshrubcoverandlowamountsofshadow.

3.3.2Non-linearMixing

Themeasurementsofsurfaceirradiancenearandundershrubswerestandardizedbyratioagainst
theirradiancemeasurementstakeninmoreopenareasawayfromtheinfluenceof shrubs.Figure4
illustratesaslightincreaseinthestandardizedNIRirradiancefluxasafunctionofproximitytotheshrub,an
affectwhichisparticularlynoticeablewhencomparedtothedecreaseinthestandardizedredirradianceflux.
TheneteffectofthisincreaseinNIRscatter,relativetoredscatter,istoimpartashrub"signal"tothe
backgroundnearshrubs.InadditiontherewasgreaterdownwardNIRflux,relativetodownwardredflux,
withintheshrubcrown(positions6and7inFigure4). Theseresultsareindicativeofthedegreeof
non-linearspectralinteractionthatcouldbeexpectedtoaffectthemodelestimatesofshrubandbackground
fractions.However,theoverallmagnitudeandeffectofthis non-linearity may not be great given the

generally sparse shrub cover in the study area (Franklin et al., 1994).

3.4 Preliminary Geometric Optical Canopy Modeling

3.4.1. Areal Proportion Modeling: The Effects of Shadow and Shrub Transmission

As a first step towards evaluating the utility of the geometric optical canopy model for estimating

shrub size and density in this landscape, the model was used to address the question: Can the average

reflectance of a shrub stand be accurately modeled as the sum of the four component signatures (sunlit and

shaded crown and background) weighted by their cover proportions? The study (described in detail in

Franklin et al., 1994) utilized data acquired in 1991 at two 0.5 ha shrub fallow stands which were very
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similarincovertypeandproportionstothefallowsitessampledinthe1992fieldcampaign.Theaverage
sitereflectancesweremodeledusingcomponentspectralsignaturessampledinthefieldandcomponent
proportionsestimatedalong1000mtransectsusingthestep-pointmethod(Bonham,1989).Averagesite
reflectancesweremeasuredbyaveragingradiometricmeasurementsacquiredalong1000mtransectslocated
adjacenttothecovertransects.Thearealproportionsofsiteshadowsweremodeledusingthemeansun
angleatthetimeoftheradiometrictransectmeasurements,andthefieldestimatedmeanshrubshape,size
anddensity.A modelofphotometricshadewasnotincludedinthetest.

Average site reflectance was estimated using, 1) a two component model, including shrub crown
and background but ignoring shadows, and 2) a four component model that included the shadowed

components. The average site reflectances predicted by the two models were not statistically different, and
both were in close agreement with the measured site reflectances (within .02-.04 reflectance units).

Although the measured reflectances of shaded components were significantly darker than their sunlit

counterparts, shrub crown cover and density were low in these sites, so that the shaded components had very

small areas and contributed little to total surface reflectance (Franklin et al., 1994).

The spectral signatures of shrub crown and background, and estimates of shrub transmissivity (from

Begue et al., 1994) were also used in a model of vegetation-soil spectral interaction modified from Huete

(I 987) to predict the spectral signatures of sunlit and shadowed shrub crown and shadowed background as a

function of varying amounts of canopy closure (Franklin et al., 1994). As the modeled vegetation cover
within a shrub crown was varied from 10 to 100%, red band reflectance decreased in a near linear fashion for

all three components, and NIR reflectance decreased non-linearly for the two shadowed components and

showed a slight increase for the sunlit crown. While this simulation could be validated for only 2 different
crown cover amounts, it further illustrated the non-linearities associated with NIR scatter and variable green

cover (Franklin et al., 1994).

3.4.2. Inverse Geometric Optical Canopy Modeling using SPOT Data

In order to parameterize a preliminary inversion test of the geometric optical canopy model and
validate the estimates of shrub size and density, 27 shrub fallow stands (including the two fallow subsites

intensively sampled in 1992) ranging in size from 2-10 ha were located in the study area using 1:14000 scale

photography. The sample plots were first magnified and scanned with a high resolution CCD camera and

brought into an image processing system. It was not possible to quantify the degree of magnification of the

photographs, therefore the pixel size of the digitized photographs was estimated using control points from
the original photographs of known scale. The average pixel size was 30 cm. In each plot, all shrubs were

counted and measured using screen digitizing methods, a procedure enhanced by image processing

techniques. A sample design analogous to the field methodology was used to estimate shrub size (average

diameter only) and density for each plot. In order to test the validity of the estimates of shrub size and

density obtained from the digitized photographs, the results were compared to shrub size and density
estimates obtained in the field. The estimates of shrub size yielded by the field and air photo methodologies

were not statistically different. The estimates of shrub density were also quite similar. These results are

indicative of the validity of the estimates of shrub size and density estimated from the digitized photographs.

The geometric optical canopy model was used to estimate shrub size and density using data from

the Systeme Pour l'Obvservation de la Terre (SPOT) sensor acquired on August 20, 1992, for the 27 fallow

plots. At this time the shrubs were quite green and the herbaceous layer had not reached peak greenness.
The individual SPOT bands were first transformed into brightness and greenness bands (Jackson, 1983).

Brightness and greenness transforms have been found to increase the spectral differentiation between the

four components of the model (Woodcock, pers. comm.). Shrub shape was parameterized as the average

shrub radius to height ratio as measured in the field. An analysis of the aerial photos showed that the spatial
distribution of shrubs was found to be equivalent to a Poisson distribution at the scale of a 20 m SPOT pixel.

Because the SPOT data used in this preliminary study had not been corrected for atmospheric

effects it was not appropriate to use the component signatures measured in the field, or brightness/greenness
transforms of those data, to run the model. Therefore, an iterative method was used to estimate the spectral

signatures for sunlit and shadowed shrub crown and background (Woodcock et al., submitted). Briefly, sets

of component spectral signatures were randomly chosen (within a spectral space constrained by theory and

physical realism, for example, the sunlit crown signature must lie in the high greenness, low brightness
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portionof the spectral space, soil in the high brightness, low greenness, etc.) and used to iteratively run the

model producing estimates of the model index of shrub cover, m, for the 27 test fallow shrub stands. The

optimal signature set chosen was the one that yielded an estimate ofm closest to that estimated from the

digitized photographs using the absolute difference in the two estimates as the criteria.

The model yielded unbiased estimates (i.e., the did not vary with the magnitude of the shrub size or

density estimates) of shrub size and density, but with low accuracy (Duncan et al., 1993b). The sampled

range of shrub cover used in the model was low (4% to 18%). A low range of shrub cover, combined with

stochastic variability and high spatial variance in background reflectance may have resulted in a low "signal

to noise" ratio. The range in shrub cover in this sample may simply be characteristic of fallow stands

throughout the study area in which case the model may be poorly posed. A recently produced large-scale

vegetation cover map of a small portion of one of the super sites may allow for the identification of fallow

stands with higher proportions of shrub cover (Loireau et al., 1993 and Loireau, pers. comm.). Alternatively,
the model could be reformulated to better account for background reflectance variations.

4. Proposed Research

4.1. General Approach

The HAPEX-Sahel experiment utilized a large array of sensors and platforms producing a diverse

remotely sensed dataset (Goutorbe et al., 1994). Data were acquired throughout the growing season, with

variable temporal coverage and frequency, by ground-based sensors (Exotech 4-Band Radiometer, SE-590

spectroradiometer), sensors on aircraft (Exotech 4-Band Radiometer, 50 m FOV; Thematic Mapper
Simulator NS001, 6 bands in the visible and NIR, 3-15 m FOV dependent on altitude; Advanced Solid State

Array Spectroradiometer [ASAS], 64 bands between 400 and 1060 nm, 3 m FOV) and satellite platforms

(SPOT, 3 bands, 20 m FOV; TM, 6 bands in visible and NIR, 30 m FOV) in a multistage, multisensor,

multidate approach. These data and extensive ground measurements of vegetation structure, spatial pattern,

proportional cover and LAI made by a number of HAPEX investigators will be used to address the following

research objectives.

4.2 Research Objectives and Hypotheses

The specific objectives of this study are to 1) use spectral mixture models to estimate the vegetation

(including separate estimates of shrub and herbaceous layer fractions) and soil fractions in the shrub fallow,

tiger bush and millet strata in the study area, with an accuracy comparable to field and air photo

interpretation methods, 2) investigate the quantitative relationships between the estimated vegetation
fractions and two biophysical quantities: proportional cover and LA1, 3) examine the effects of sensor

spectral, spatial and temporal resolution on objectives 1 and 2, and 4) integrate the spectral mixture and

geometric optical model approaches in order to improve the estimates of shrub size and density. A

discussion of each hypothesis will be presented first.

1. The vegetation components in the study area are combinations of green, photosynthetically active plant

parts, primarily leaves, and NPV, i.e., stems, branches and litter. In the study area, it is likely that the spectra

of green leaves, soil and shade will constitute separable endmembers in the mixture model (i.e., their spectra

will be located at different endpoints of the n-dimensional data cloud described by the remotely sensed data).

The direct modeling of NPV may be problematic because of spectral similarities with soil, and soil/shade

mixtures. Vegetation fraction estimates should be primarily correlated with green leaf abundance once the

level of green leaf growth has achieved the minimum abundance for spectral detectability. Green vegetation
fractions should also be correlated with proportional vegetation cover as vegetation leaf-out proceeds.

However, the correlations should be greater with LAI, a more absolute measure of green leaf abundance.
Green LAI was estimated in the field at shrub fallow and millet sites, but not in tiger bush, leading to the

following hypotheses:
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Hypothesis 1a: Correlations between green vegetation fractions and the proportional cover of actively

photosynthesizing vegetation will be significant and positive for all three strata during the growing season

after green LAI has achieved a level of abundance necessary for spectral detectability.

Hypothesis lb: In the shrub fallow and millet strata, the correlations between modeled green vegetation

fractions and LAI will be significantly greater than the correlations between modeled green vegetation

fractions and proportional cover.

Hypothesis 1c: For shrub fallow and millet study plots, the slopes and intercepts of the green fraction/LAI

relationships will be less variable over the course of the growing season than the slopes and intercepts of the

green fraction/proportional cover relationships, which will vary seasonally with variations in the amount of

green leaf material filling the plant crown volume.

2. While not spatially significant in the tiger bush and millet strata, the herbaceous cover is spatially
abundant in the shrub fallow strata. However, it is not likely that shrubs and the herbaceous layer can be

spectrally differentiated using a mixture model applied to broad band data (e.g., TM, NS001, SPOT, 4-band

airborne sensor) when both vegetation types have an abundance of green leaves. However, it may be

possible to estimate the relative cover proportions, or LA1, of shrubs vs. the herbaceous layer utilizing

differences in their temporal pattern of green-up. The following hypotheses related to this objective are:

Hypothesis 2a: In shrub fallow stands, the correlation between green vegetation fractions estimated by

spectral mixture models and shrub cover or shrub LAI will be significant and positive only early in the

growing season, before the green-up of the herbaceous layer.

Hypothesis 2b: In shrub fallow stands, the correlation between green vegetation fractions estimated by

spectral mixture models and the herbaceous layer proportional cover or LAI will be significant and positive
for the period beginning when the herbaceous layer has achieved the minimum abundance for spectral

detectability, until the period of herbaceous layer senescence at the end of the growing season.

3. The ability of a mixture model to detect and accurately estimate the fractions of particular surface

components depends in part on the characteristic spectra of the component and the spectral characteristics of
the sensor, e.g., the number of bands, the bandwidths, and their location along the electromagnetic spectrum.

There may be some variation in component detectability among the tested sensors because of their variation

in the above factors. For example, some of the bands sampled with the NS001 and TM sensors include

narrow absorptive wavelength regions characteristic of leaf spectral properties (TM band 5), cellulose and

lignin (TM band 7) (Elvidge, 1987). However, these component spectral properties may not be detectable
within the wide bandwidths of the NS001 and TM sensors. The ASAS sensor detects radiance in many

narrow bands but its coverage is limited to a spectral range between 400 and 1060 nm. These data, and the

high spectral resolution measurements of component reflectance acquired in the field with the SE590

spectroradiometer, will be evaluated for potential narrow band absorptions that could be used to detect NPV,
soil variations or to better differentiate shrubs from the herbaceous layer. The number of detectable

components in the mixture can be estimated by the amount of variance explained by the model as a function

of model complexity (e.g., the number of components in the model) leading to the following hypotheses:

Hypothesis 3a: The number of components in the mixture model resulting in the highest percentage of

explained variance will not vary for the broad band sensors (e.g., from three to six bands).

Hypothesis 3b: For high spectral resolution ASAS data, the number of components in the mixture model

resulting in the highest percentage of explained variance will be greater than the maximum number of

detectable components for models of broad band data.

4. Variations in sensor spatial resolution should have an impact on spatial variations in model errors.

Surface components with unique spectral signatures that cover small areas (for example, a contrasting

vegetation or soil type) are typically not included explicitly in a mixture model, but do contribute spectral

16



noisetothemodel.Assumingarandomspatialdistributionforthesecomponents,highspatialresolution
sensorswillsamplesomepixelswithhighproportionsofnoisecomponentsandsomepixelswithlow
proportionsofnoisecomponents(i.e.,largeinterpixelnoisevariances).Lowspatialresolutionsensors
averagingupwellingradianceoverlargerareas(i.e.,largerpixelsizes)will tendtoincorporatemoreequal
amountsofnoisecomponentsineachpixel(lowinterpixelnoisevariances).Theresidualerrorvariances
shouldfollowthispatternsincetheresidualerrorinthemixturemodelissimplythedifferencebetween
modeledpixelreflectance(i.e.,estimatedfractionsmultipliedbytheirinputspectralsignatures)and
measuredpixelreflectance.Thevarianceintheerrorsofthefractionsshouldfollowthepatterns
hypothesizedabove.Itshould,therefore,bepossibletoderivemoreaccurateestimatesofthespatial
distributionoferrorsinfractionestimatesfrommixturemodelsdrivenbyhighspatialresolutiondatathan
thosederivedfromlowspatialresolutiondata,eventhoughtheiraverageerrorsaresimilar.Thefollowing
hypothesisisproposed:

Hypothesis4: Withinasinglelandscapecoverclass,i.e.,millet,fallow,ortigerbush,thehighestspatial
resolutiondata(smallestpixelsize)will resultinsignificantlygreaterinterpixelvariancesintheresidual
errorofthemixturemodelthanthatofthelowestspatialresolutiondata(largerpixelsizes).

5. Inordertoimprovetheaccuracyofestimatesofshrubsizeanddensity,outputfromthespectralmixture
models(e.g.,estimatesofthesubpixelproportionsofshrubs,theherbaceouslayerandsoils)willbeusedin
conjunctionwithageometricopticalcanopymodel.First,if anaccurateestimateofshrubproportional
covercanbederivedfromaspectralmixturemodel,thentheaverageshrubsizeanddensitycanbe
calculateddirectlyusingequations2and3fromthegeometricopticalmodel(asdescribedinsection2.2).
Alternatively,anestimateofthevariabilityinbackgroundreflectancecouldbederived.Forexample,the
soilfractionestimatedbythespectralmixturemodelforeachpixel,multipliedtimesthesoilspectra,would
produceanestimateofthecontributionofsoilreflectancetothetotalreflectanceofeachpixel.Then,an
estimateofthevarianceinsoilreflectancefortheshrubstandcouldbecalculated.Thesamecalculations
couldbedonefortheherbaceouslayer.Thestandreflectancevarianceduetothebackgroundcouldthenbe
subtractedfromthetotalstandvarianceleavingthereflectancevariationsduetoshrubsandshadowtodrive
thegeometricopticalcanopymodel.Becauseofthespectralsimilarityofgreenshrubleavesandgreen
herbaceousmaterial,theaccurateestimationoftheherbaceouslayerfractionsmaybeproblematic.
However,giventhemagnitudeofthesoilreflectanceandthespatialdistributionandsizeofbaresoil
patches,asobservedinthefield,lesseningoftheinfluenceofsoilreflectancevariationsalonecouldimprove
theaccuracyoftheestimatesofshrubsizeanddensity.Therefore,thefollowinghypothesesareproposed:

Hypothesis5a:Theuseof an independent estimate of shrub proportional cover from a spectral mixture
model, in a modified version of the geometric optical canopy model, will result in a statistically significant

improvement in the accuracy of estimates of shrub size and density over the estimates produced by an

unmodified geometric optical canopy model.

Hypothesis 5b: The use of an independent estimate of soil proportional cover from a spectral mixture model,

in a modified version of the geometric optical canopy model, will result in a statistically significant

improvement in the accuracy of estimates of shrub size and density over the estimates produced by an

unmodified geometric optical canopy model.

5. Methods

The proposed methodology of this dissertation (illustrated in Figure 5) will be described in four

parts: 1) the acquisition and processing of both the radiometric and photographic data acquired from the

Piper aircraft platform, described conjointly because of the interdependence of these two datasets, 2) the

acquisition and preliminary processing of the other remotely sensed datasets, 3) the acquisition and
processing of the field data and aerial photographic data necessary for parameterizing and validating the

models, and 4) the proposed modeling sequence and analyses of results as they pertain to each hypothesis.

5.1 Airborne Four Band Radiometer Data and 35 mm Photography
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Exotechradiometerdata with a nominal 50 m FOV and concurrent 1:800 scale 35 mm photographs

were acquired by researchers aboard a Piper light aircraft. The Piper was used to intensively sample the

millet, fallow and tiger bush subsites in all three super sites taking repeated measurements along short

transects across each subsite. The sample design resulted in 10 to 20 non-overlapping measurements per

measurement date across a subsite. In addition, measurements were taken periodically along longer transects

across portions of the 1o square (n = 50-100). The acquisition of Piper data commenced prior to the onset of

the growing season and continued at approximately two week intervals until mid-October, just before

complete vegetation senescence. The samples of surface radiance have been converted to reflectance factors

using data from a cross-calibrated Exotech concurrently sampling the reflectance of a reference plate on the

ground (Wim van Leeuwen, pers. comm.).
The proportional cover of the components within the radiometric FOV of each sample will be

determined by an analysis of each accompanying photograph. The location of the FOV within the

photographs will have to be estimated at the outset of the analysis because the alignment of the radiometer
relative to the alignment of the camera was not precisely determined during the period of data acquisition.

The radiometer FOV will be located by analyzing photographs that contain varying amounts of surface

components with highly contrasting radiometric signals. For example, a series of samples acquired along a

transect over the Niger river contained different amounts of a lush, green, rice crop and open water, two

cover types with contrasting pure radiometric signatures. A radiometric signal conforming to the spectra of

water would indicate that the entire FOV was within the portion of the photograph delimited by water. As

the relative amounts of water and rice cultivation vary in the photographs, the radiometric signal will vary in

accordance with the location of the radiometer FOV, enabling the determination of the approximate location

of the radiometric footprint.
Once the location of the FOV has been determined, the proportional cover of the components

(vegetation, soil) within each sample will be estimated from each accompanying photograph using the dot

grid method (Duncan et al., 1993a, Warren et al., 1986). The photographs will be projected over a grid of
dots with a resolution of approximately 1 m. The vertically projected cover of each component will then be

estimated as the ratio of the number of dots intersecting each component divided by the total number of dots

in the grid, multiplied by 100. Different vegetation types, soil color and NPV will be scored as separate

components if distinguishable in all the photographs for any particular date/flight.

5.2 Other Remotely Sensed Datasets

NASA scientists aboard a C-130 aircraft acquired NS001 and ASAS data periodically during the

lOP, from August 15 to October 9. These data were acquired over all subsites along short imaging transects.

There were additional data acquisitions along longer transects across the I ° square. The pixel size of the

NS001 images varied from 2 to 20 m depending on the flying height. The pixel size of the nadir look ASAS

images was nominally 3 m. The NS001 and ASAS data are undergoing radiometric and atmospheric

correction (using the 6S model described in Didier et al., 1993) by researchers at NASA Ames and NASA

Goddard, respectively.
Four, cloud-free TM scenes were acquired in a sporadic temporal sequence, beginning before the

start of the growing season (June 5), during or just after the peak of the growing season (September 25 and

26) and after peak greenness but before complete senescence (October 14). These data are undergoing

atmospheric correction and calibration to reflectance values (M. Spanner NASA Ames, pers. comm.).

Fifteen SPOT images were acquired with high temporal frequency during the 1992 growing season. The

SPOT images have been corrected for atmospheric effects using the radiative transfer model 6S and

calibrated to reflectance values by HAPEX-Sahel researchers working at LERTS in France (Kerr, pers.

comm.).

5.3 Field Data and Aerial Photography

Most of the field data collection procedures have already been described (see Section 3.2). In

addition to the two fallow plots studied extensively in the field, 25 additional fallow plots have been

identified in the aerial photographs acquired by researchers aboard NASA's C-130 aircraft (see Section
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3.4.2).Theaverageshrubsize(verticaldimensions)anddensityoftheseplotshasbeenestimated. The

proportional cover of soil and the herbaceous layer will also be estimated for these plots using the dot grid

method (Duncan et al., 1993a and see Section 5.3 above). An additional 20 study plots within the tiger bush

strata will be identified in the aerial photography and analyzed for the proportional cover of vegetation and

soil using the dot grid method. Component cover and LAI was also estimated at all fallow and millet

subsites throughout the growing season at approximately monthly intervals by other investigators (Prince et

al., 1993; Goutorbe et al., 1994).

The acquisition of component signatures in the first four TM bands via handheld radiometer has

been described previously (see Section 3.2). Samples of component spectra were also acquired with a SE590

spectroradiometer (described in van Leeuwen et al., submitted). These data will be evaluated for potential

narrow band absorptions that could be used to detect NPV, multiple soil types or to better differentiate

shrubs from the herbaceous layer using ASAS data.

6. Modeling

6.1 Spectral Mixture Modeling

In this section, the initial parameterization of the mixture models will be discussed first, followed by

a description of the model outputs and how they will be used to test Hypotheses !-4 (e.g., the hypotheses

related most directly to spectral mixture modeling.) Finally, the modeling procedures related to testing

Hypothesis 5 (integrating the mixture model outputs with the geometric optical canopy model) will be
discussed.

6.1.1 Mixture Analysis Parameterization and Initial Evaluation

A linear spectral mixture analysis will be performed for each remotely sensed dataset (e.g., Piper

four band radiometer, SPOT, NS00 l, TM and ASAS) acquired on each date throughout the growing season.

Each model tested will include a minimum of three components (green vegetation, soil and shade). More

complex models including additional components, for example NPV and/or multiple soil types, will be tested

with data having six or more bands (e.g. NS001, TM and ASAS). Each mixture model will be evaluated

initially by, l) the amount of spectral variance in the input data explained by the model (i.e., are the

components in the model the major source of the spectral variance), 2) the magnitude and spatial distribution

of the model residuals, and 3) the relative magnitudes and spatial distribution of the component fraction
estimates.

Mixture analyses of the Piper radiometer data will be fit using component four band reflectances

measured in the field. The high spatial resolution datasets (e.g., NS001 and ASAS) are likely to contain

pixels consisting of pure components, therefore, these mixture models will be fit using image endmember

spectra alone. Identifying single pixels in the SPOT or TM imagery that are composed of pure components

will be problematic leading to alternative parameterization methodologies.

The SPOT images used in the mixture analysis will have undergone atmospheric correction and an

independent calibration to reflectance values. Therefore, the initial modeling of these data will utilize

component reflectances measured in the field. This will involve converting component reflectances
measured in TM bands 2, 3 and 4 (green, red and NIR) with their SPOT equivalents. In order to derive the

correct conversion factors, the reflectance of the reference plate was sampled in the field with the radiometer

fitted alternatively with the corresponding TM and SPOT filters.
If the initial evaluation of the mixture model indicates that the atmospheric correction of the SPOT

data may be incomplete, reference endmembers will be aligned to image endmembers using the two-step

approach (Smith et al., 1990; Roberts et ai., 1993). First, image endmembers will be chosen that have high

proportional covers of each component in the model, but do not necessarily represent pure pixels of the

single components. These endmember spectra will then be modeled, using multiple regression, as

combinations of the reflectance spectra of the suspected components in the model as measured in the field.

The coefficients of the regression will be used to further correct the satellite data for atmospheric effects and
recalibrate the data to reflectance values. The mixture analysis will then be repeated using the field-

measured component reflectances.
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TheTMimagesarealsoundergoingatmosphericcorrectionandcalibrationtoreflectancevalues.
However,theradiometricsensorsusedinthefielddidnotsamplebeyond1160nm.Therefore,thereareno
estimatesofcomponentreflectancesinTMbands5and7. Theinitialmixtureanalyseswillutilizeimage
endmembers.Theresultsoftheseanalyseswillbeassessedandif theyproveunsatisfactory,thefactor
analysisapproachwillbeutilizedinordertopredictcomponentreflectancesintheunsampledspectral
bands.First,thedatamatrixofsamples(pixels)bybandswillbedecomposedintoitsabstracteigenspectra
andeigenvectormatricesusingsingularvaluedecomposition.At the same time, the singular values of the

matrix will be produced, yielding an estimate of the variance explained by each abstract component. Then,

the eigenspectra of the significant components will be aligned with the reflectance spectra of the real

components at which time the missing band samples will be simultaneously predicted (Malinowski, ! 991).
The transformation matrix used to align the component spectra will be applied to the eigenvector matrix

producing the real fractions. The model residuals will then be calculated on a pixel by pixel basis.

6.1.2 Testing Hypotheses

In order to test hypotheses 1 and 2, vegetation fraction estimates will be regressed against

proportional vegetation cover estimated in the field and from aerial photographs for all three vegetation

strata (fallow, millet and tiger bush), and against LAI estimated in the field at the fallow and millet subsites.

For fallow data, regressions will be run separately for shrubs and the herbaceous layer, and for these two

vegetation types combined. Vegetation fraction estimates from the mixture analysis of the Piper radiometer

data will be regressed against vegetation cover estimates on a sample by sample basis for each date and cover

type. Regressions against LAI estimated at the subsite level will done using reflectance data averaged over

the subsite. For the remotely sensed data in image format, vegetation fractions will be extracted for each

subsite and all additional study plots identified in the aerial photography. The average fraction for each plot

will be regressed against cover or LAI for each sensor/image type, date, and vegetation strata.

LAI was estimated at approximately monthly intervals only at the fallow and millet subsites (n =

four and three, respectively). Therefore, a regression analysis of the fraction/LAI relationships for a single

date will be problematic because of the small number of samples. An additional analysis will utilize the

complete temporal sequence of LAI estimates in regressions against the vegetation fraction estimates. This

analysis will be done for the millet and fallow strata (the shrub and herbaceous layer separately, and

combined), for each of the remotely sensed data types.

Hypothesis 3, component "detectability" as a function of spectral resolution, will be tested by

comparing the number of components in each mixture model resulting in the highest percentage of explained

variance. In addition, the level of correlation of fraction estimates with the corresponding field and

photographic estimates of vegetation and soil cover will be evaluated as a function of model complexity

(number of components) and remotely sensed data type.

Hypothesis 4 will be tested by comparing the variance in model residuals for mixture models of

varying spatial resolution data acquired on similar dates. Furthermore, the semivariance of the residuals
(both the residual averaged across all bands and for each individual band) for each plot within each strata

will be calculated and analyzed for spatial structures that could be indicative of the source of model errors,

e.g., unmodeled components, or incorrect component signatures. Finally, the spatial distribution of negative
residuals will be analyzed as a means of identifying unmodeled components, e.g., NPV, that exhibit

characteristic absorptions within particular spectral bands.

6.2 Geometric Optical Canopy Modeling

As described previously, the geometric optical canopy model has been tested in shrub fallow areas

using one date of SPOT data with the results validated using the estimates of shrub size and density from 27

shrub fallow study plots. Further tests of the model will be conducted using additional dates of

atmospherically corrected SPOT and TM imagery. The component signatures used in these tests will be

determined in two ways. First, using 14 of the 27 fallow study plots (leaving 13 plots for model evaluation)

the iterative method described previously for uncorrected data will be used (see sections 2.2 and 4.3). The

aerial photography and the vegetation map (Loireau, pers. comm.) of a small portion of one of the super sites
will be examined for fallow stands with larger or more dense shrubs to improve model calibration. An
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additionaltest of the model will use the field measured component signatures directly in models of satellite

data that have been calibrated to reflectance values.

Hypothesis 5 will be tested in the following ways. First, if an accurate estimate of shrub

proportional cover can be derived from a spectral mixture model (see Hypothesis 2a), then the average shrub

size and density will be calculated directly. Shrub cover will be converted to the cover index, m, by dividing
by n on a pixel by pixel basis. Then, the mean and variance ofm for each test stand will be used to calculate

R 2, or the average shrub size per stand using equation 3. Equation 2 will then be manipulated algebraically

to solve for n yielding an estimate of density for each pixel in each stand.

Alternatively, an estimate of the variability in the stand background reflectance will be derived by

multiplying the fractions of background components estimated by the mixture model, by their respective

spectra. The stand background reflectance variance will then be subtracted from the total stand variance

leaving the reflectance variations due to shrubs and shadow to drive the geometric optical canopy model. If

an accurate estimate of the herbaceous layer fraction cannot be produced by the mixture model, the same

procedure will be followed for the soil fraction alone. Given the magnitude of the soil reflectance and the

spatial distribution and size of bare soil patches, the lessening of the influence of soil reflectance variations

may improve the accuracy of the estimates of shrub size and density.
The estimates of shrub size and density from the unmodified and modified geometric optical canopy

models will be validated by regression against the estimates of density and size (shrub diameters) for all 27

fallow study plots where size and density has been estimated in the field and from aerial photographs.

7. Anticipated Results and Discussion

The ultimate goal of this study is to use spectral mixture models and a geometric optical canopy

model to estimate the spatial distribution of key biophysical parameters needed for climatological models of
surface flux, NPP models, and for studies of land cover changes over time, in the semiarid sub-Sahelian

biome. The HAPEX-Sahel dataset, including extensive ground, air and satellite measurements, affords the

opportunity for an integrated study of the effects of sensor spatial, spectral and temporal resolution on the

kinds of biophysical parameters that can be estimated, and with what degree of accuracy in this landscape

type. The significance of the anticipated results of this study will be discussed within the framework of the

research hypotheses.
The results pertaining to hypotheses I a. and lb. will help clarify the link between modeled

vegetation fractions and the biophysical parameters, proportional cover and LAI. Using green vegetation
endmembers in the mixture model should result in fractions that are significantly correlated with the

proportional cover of the actively photosynthesizing vegetation, even though the estimation of proportional

cover includes NPV, shade and small canopy gaps. Correlations should be greater with a pure measure of

photosynthetic material, e.g., green biomass or LAI. Furthermore, the slopes and intercepts of this

relationship should be more constant over time, leading to the potential for the development of empirically

derived equations for predicting LAI from mixture model green vegetation fractions based on future or

retrospective imagery.

Using broad band data in a spectral mixture model to differentiate shrub fractions from herbaceous

layer fractions in shrub fallow areas will be problematic, particularly when both shrubs and herbs have an

abundance of green leaves. However, utilizing the temporal variability in their respective patterns of leaf-out

and senescence (Hypotheses 2a. and 2b.), it may be possible to derive an estimate of their relative

proportions. Furthermore, an estimate of the proportional cover of shrubs made before the start of the

growing season could be used as an initial condition in models of NPP. An early growing season estimate of

shrub LA! (before the green-up of the herbaceous layer) could also be used to help calibrate an NPP model.

Increasing the number of spectral bands may not result in an increase in component detectability
(i.e., greater number of components) or in the accuracy of component fraction estimates (Hypothesis 3).

However, the results may show that mixture models using data from a variety of broad band sensors can

estimate the fractions of the dominant surface components with reasonable accuracy. Broadband satellite

sensors provide the necessary data for current large-scale studies of earth surface processes, and were also

used to acquire the historical data necessary for studies of landcover changes that may have already taken

place. The analysis of high spectral resolution data may show an increased capability to detect a greater
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numberofcomponents,eitherthroughdirectmodelingorresidualanalysis.Thisresultcouldbefurther
evidencefortheneedforhighspectralresolutionsensorsonsatelliteplatforms.

AsstatedinthediscussionofHypothesis4,variationsinsensorspatialresolutionshouldhaveits
greatestimpactonspatialvariationsinmodelerrors.Higherspatialresolutionshouldresultinmore
individualpixelswithhigherproportionsofunmodeledcomponents,orother"noise"factors,resultingin
higherinterpixelerrorvariance.Largerpixelsshouldincorporatemoreconstantamountsofnoiseineach
pixelresultingin lowerinterpixelerrorvariance.Therelationshipbetweenspatialresolutionandthe
variableinclusionofnoiseinthemodelwillmoreimportantlyimpacttheaccuracyofthemodeledfraction
estimates.It might,therefore,bepossibletoderivemoreaccurateestimatesofthespatialdistributionof
errorsin fractionestimatesfrommixturemodelsdrivenbyhighspatialresolutiondatathanthosederived
fromlowspatialresolutiondata,eventhoughtheiraverageerrorsmightbesimilar.

Finally,combiningthespectralmixtureandgeometricopticalapproaches(Hypotheses5a.and5b.)
mayresultin increasedaccuracyintheestimatesof shrub size and density. The spectral mixture model may

provide a method for estimating shrub cover, from which shrub size can be calculated directly using a

modified form of the geometric optical canopy model. Alternatively, the mixture model could provide

estimates of the cover of background components on a pixel by pixel basis. The variance in background
reflectance could then be calculated and removed from the stand reflectance variance leaving that due

primarily to shrubs and the shadows they cast to run the geometric optical canopy model. Thus, improved

estimates of the spatial distribution of shrub size and density could be calculated and used to help

parameterize roughness length estimates in flux models.
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Figure 1.

Cartoon illustrating, in two dimensional spectral space, the

theoretical positions of three endmembers: bright soil, green

vegetation and shade.
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Figure 2.

Component spectra: SHCR=shadowed crown, LT=laterite,

SHBK=shadowed background; 2 sample dates, DOY 212 (open

symbols), DOY 280 (closed symbols).
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Figure 3. / the (f_Component spectra: Figure 2 is similar to Figure with
addition of NPV=non-photosynthetically active vegetation and ......

deletion of crown and LT (laterite).
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Figure 4.

Proportional spectral irradiance near and under Guiera shrubs:

Transect positions (fully described in the text): positions 1-4 in

the sun approaching the shrub, 5 is shrub edge, 6 and 7 are

under shrub, 8 in shrub shadow, 9 and 10 in sun beyond shrub.
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